Low cost EDXRF elemental analyzers

Energy dispersive X-ray fluorescence
NEX QC delivers superior performance in a rugged package

Energy dispersive X-ray fluorescence (EDXRF) is a routinely used analytical technique for the qualitative and quantitative determination of major and minor atomic elements in a wide variety of sample types. The heart of its versatility stems from the ability to provide rapid, non-destructive, multi-element analyses — from low parts-per-million (ppm) levels to high weight percent (wt%) concentrations — for elements from sodium (11Na) through uranium (92U). The versatile Rigaku NEX QC series of EDXRF spectrometers delivers routine elemental measurements across a diverse range of matrices — from homogeneous liquids of any viscosity to solids, thin films, alloys, slurries, powders and pastes.

Elemental analysis in the field, plant or lab

Especially designed and engineered for heavy industrial use, whether on the plant floor or in remote field environments, the superior analytical power, flexibility and ease-of-use of the NEX QC series add to its broad appeal for an ever expanding range of applications, including exploration, research, RoHS inspection, and education, as well as industrial and production monitoring applications. Whether the need is basic quality control (QC) or its more sophisticated variants — such as analytical quality control (AQC), quality assurance (QA) or statistical process control like Six Sigma — the NEX QC series is the reliable choice for routine elemental analysis.
Intuitive software with smartphone interface

Availability of hardened high-resolution touchscreen displays has allowed Rigaku to redefine the user interface experience for the 21st century. Membrane keyboards and primitive displays are now a thing of the past. Operating the NEX QC series of elemental analyzers is a familiar experience, with finger selectable icons guiding users through routine analysis operations. Smartphone interface technology lowers the cost of ownership because it simplifies operator training and reduces the potential for operator error.

Live spectrum acquisition with the NEX QC showing Cr, Cu and As peaks from a treated lumber sample

Calibration curves and statistics are accessible with a familiar smartphone style interface

Validation mode may be easily set up to afford automatic pass/fail interpretation of analytical results

Intuitive software with smartphone interface

Availability of hardened high-resolution touchscreen displays has allowed Rigaku to redefine the user interface experience for the 21st century. Membrane keyboards and primitive displays are now a thing of the past. Operating the NEX QC series of elemental analyzers is a familiar experience, with finger selectable icons guiding users through routine analysis operations. Smartphone interface technology lowers the cost of ownership because it simplifies operator training and reduces the potential for operator error.
For more demanding applications, or for situations where analysis time or sample throughput is critical, Rigaku offers the NEX QC+ spectrometer. Employing the next generation silicon detector technology, the enhanced NEX QC+ affords significant improvements in elemental peak resolution and counting statistics, resulting in superior calibrations and precision for the most challenging measurements.

Silicon drift detector technology
A silicon drift detector (SDD) affords extremely high count rate capability with excellent spectral resolution. This enables NEX QC+ to deliver the highest precision analytical results in the shortest possible measurement times. The unique engineering feature of SDD is the transversal field generated by a series of ring electrodes that forces charge carriers to “drift” to a small collection electrode. Current generation SDD detectors, with the field effect transistor (FET) moved out of the radiation path, represent the state-of-the-art in conventional EDXRF detector technology.
In X-ray fluorescence (XRF), an electron can be ejected from its atomic orbital by the absorption of light (photon) from an X-ray tube. The energy of the photon (hv) must be greater than the energy with which the electron is bound to the nucleus of that atom. When an inner orbital electron is ejected from an atom (middle image), an electron from a higher energy level orbital transfers to fill the vacant orbital. During this transition, a photon may be emitted (right image). Because the energy difference between two specific orbital shells is always the same for a specific element, the emitted photon will always have the same characteristic energy (keV). For a fluorescent emission line, for a given element, the number of photons per unit time (counts per second or cps) is related to the amount of that element in a sample. Counting rates are calculated by measuring, for a set time, the number of photons detected for the various observed elemental X-ray fluorescence lines (spectral peaks). Thus, qualitative and quantitative elemental analysis is achieved by determining the energy of X-ray peaks in a sample spectrum and measuring their associated count rates.

State-of-the-art X-ray optics
The NEX QC series employs a 50 kV X-ray tube, and Peltier cooled semiconductor detector technology to deliver exceptional short-term repeatability and long-term reproducibility with excellent elemental peak resolution. The high voltage, along with multiple automated X-ray tube filters, provides multi-element analysis capability for unmatched performance with low limits-of-detection (LOD). Optics are protected by a safety film that requires no tools to change.
Nondestructively analyze from sodium through uranium

Smartphone interface
High-resolution, modern, user-friendly touch screen navigation and instrument control; display interface is "petro pump" quality and hardened for heavy industrial use.

No tools safety film
No tools are required to change the safety film protecting the optical kernel, enabling easy and rapid replacement.

Built-in printer
Thermal printer provides fast hard copy results when and where you need them.

X-ray tube conservation
By operating only during data collection, X-ray tube wear and tear is minimized — lowering operating costs.

Fundamental Parameters option
Dramatically reduces the number of standards needed to implement a high quality calibration; especially useful when standards are difficult to obtain or for complex matrices where many elements vary independently.
Silicon detector technology
High-resolution, high-throughput thermo-electrically cooled Si-detector is standard on the NEX QC. Even higher performance is available with the SDD equipped NEX QC.²

Up to 38 calibrations
A large number of calibrations are available at the touch of a finger, supporting a vast array of applications and sample types.

Digital data output
Ethernet RJ-45 jack and USB port for output to LIMS or memory stick. Data is available in either CSV or PDF format.

Single position or autosampler
Standard single position configuration can be supplemented with an optional autosampler.

Removable sample trays
Interchangeable optional autosampler trays may be pre-loaded, and swapped in and out, to increase efficiency or where throughput is important. Supports 32 mm and 40 mm cups.
Applications span global industries

Catalysts
EDXRF analysis of heterogeneous and homogeneous catalysts can be used to determine heavy metal content or stoichiometry and/or to quantify poisoning agents. Determination of the value of precious metals content in recycled automotive catalysts is a cost effective application for the NEX QC+

Cement
The Rigaku NEX QC series of elemental analyzers are reliable and rugged low-cost systems for quality control measurements at cement plants, making them ideal tools throughout the production process and as backups to WDXRF systems. They are applicable to clinker and raw meal, and may be used to measure gypsum (SO₃) in finished cement.

Coatings
Paper and plastic may be coated with a thin layer of silicone as a release coating in the manufacture of tape or other adhesives or as a barrier coating for protection against air in the packaging of food and other materials. Metallic coatings, either electroplated or sputtered onto some substrate material, may also be quantified with NEX QC series.

Cosmetics
Since many additives in cosmetics are minerals or inorganic compounds, EDXRF is ideal. Applications include Ti and Zn oxides as UV blockers as well as Fe, Ti and Zn oxides and metallic dyes as pigments. Rigaku's NEX QC series of elemental analyzers can also screen cosmetics for toxic metals and inspect incoming raw materials.

Education
An understanding of the basis of atomic spectroscopy is one of the key tenets underpinning the core sciences of physics and chemistry. Low cost EDXRF is an ideal way to give students instrumentation time in the lab to support their classroom instruction. Unlike AA or ICP, no routine maintenance or consumables are required.

Geology
In studying Earth, geologists routinely analyze the composition of rock and mineral samples. Rapid elemental analyses can be accomplished with NEX QC series of elemental analyzers without sample digestion. Common industrial geological applications include analysis of limestone, kaolin clay and silica sand.

Metals and alloys
Elemental analysis is typically used as a basis for classifying alloys, controlling their production, or verifying their designation. In addition to routine QC applications like iron in aluminum alloys, NEX QC instruments equipped with the VS (variable spot) option are employed in jewelry analysis to determine composition for valuation.
Mining and refining

Foundries, smelters and mills are characterized by having continuous production, demanding control of both the process and the quality of incoming and outgoing materials. NEX QC series of elemental analyzers may be used to analyze ores, feeds, slags and tails. Low cost EDXRF also makes an ideal backup analyzer.

Paint and pigments

Many paints and pigments contain metal dyes, opacifiers and other inorganic stabilizers that can be analyzed by EDXRF. One specific application is titanium dioxide and lead chromate in white and yellow road paint respectively. NEX QC series is the ideal low cost solution for industrial quality control, as well as for forensic identification of paint chips.

Petroleum

From the quantification of heavy elements in crude oil to sulfur in fuels to a variety of elements in lubricating oils, EDXRF is a well established technique for the petroleum and petrochemical industries. For sulfur in crude oil, bunker fuel and ULSD, NEX QC series is specific to ASTM D4294, ISO 20847 and 8754, IP 496 and 336, JIS K 2541-4, as well as ISO 13032.

Plastics

Plastics, polymers, and rubber are combined with different additives to afford specific properties. Commonly analyzed as beads, pressed or molded into plaques, typical applications include Br and Sb as fire retardants; stabilizers and lubricants such as P, Ca, Ba, and Zn, as well as Mg, Al, Si, Fe in fiberglass and S in polyurethane.

RoHS

RoHS provides that plastics for consumer goods — as well as new electrical and electronic equipment put on the market for the first time from July 1, 2006 — should not contain certain heavy metal toxins, including Pb, Cd, Hg, and hexavalent chromium (Cr). NEX QC series, with the VS (variable spot) option, can help compliance by providing rapid elemental analysis.

Wood

Processes undertaken to prevent wood rot fall under the definition of wood preservation or timber treatment. The NEX QC can help control a number of different chemical preservatives and processes used to extend the life of wood and engineered wood products, including: CCA, IPBC, PENTA, copper (CA-B, CA-C), and ACZA.

Wovens and non-wovens

Fabrics of all kind are either created with inorganic chemical additives or treated with compounds to modify the behavior of the material. The NEX QC series of Rigaku elemental analyzers is ideal for quantifying compounds such as fire retardants, UV stabilizers, anti-microbial treatments and electromagnetic shielding.
Options

Fundamental Parameters

As an optional means of obtaining semi-quantitative results based on theoretical equations that govern how X-rays interact with matter, fundamental parameters (FP) is a way to determine elemental concentrations without the need for a large suite of standards. In the NEX QC series, the sophisticated FP module performs a variety of functions, including: background modeling, spectral deconvolution, peak intensity extraction, and X-ray absorption/enhancement correction. By measuring one or a few assayed type standards (of a specific sample matrix), a Matching Library may be created to improve the theoretical fit. Thus, an FP calibration provides high-quality semi-quantitative concentration results when a large suite of standards is not available.

Variable spot (VS) with CMOS camera

Specifically designed to serve the RoHS and jewelry markets, the variable spot (VS) option features a single-position sample stage with three easily changeable collimators, providing effective analysis spots of 3, 8 and 14 mm. Large irregular objects, as well as small items, are accommodated by the large 190 x 165 x 60 mm sample chamber. A 2.0 megapixel CMOS color camera and LED lighting system allows a sample to be visualized on the touch screen interface. For complete clarity and optimal sample alignment, the region to be analyzed is marked on the real-time image by a reticle.

Sample spinner

Coarse grained, inhomogeneous and rough finished samples should be rotated during analysis to provide an averaged presentation and to suppress diffraction peaks. Thus, a single position 32 mm sample spinner is offered as an option. Extremely robust in design, the spinner is almost completely silent while rotating at its nominal speed of 32 rpm. It may be used in autosampler equipped models by replacing the automatic sample tray as needed.

Helium purge

Light element performance is dramatically improved by use of a helium (He) environment during analysis. Helium flow rate is 0.2 liters per minute (SLM).

Autosampler

In addition to the standard single position (32 mm) sample holder (right image) and large object adapter, two automatic sample changers are offered as options. A six position changer (left image) accommodates 32 mm samples while the five position variation accepts 40 mm samples. Both autosampler trays take the respective industry standard XRF sample cups. Extra trays may be used to preload trays for easy batch analysis.
Specifications

Excitation
- 50 kV X-ray tube
- 4 W max power
- 6 tube filter positions with shutter

Detection
- High performance semiconductor detector
- Peltier thermo-electric cooling
- Optimum balance of spectral resolution and count rate

Sample chamber
- Large 190 x 165 x 60 mm sample chamber
- Single position 32 mm sample aperture
- Single position 40 mm sample aperture
- Bulk sample aperture
- 6-position 32 mm automatic sample changer
- 5-position 40 mm automatic sample changer
- Single position 32 mm sample spinner
- Analysis in air or helium

Software and application packages
- Qualitative and quantitative analysis
- Normalization and validation feature
- Fundamental parameters
- Data export function with LIMS compatibility
- User selectable shaping times
- Simple flow bar wizard to create new applications
- Icon driven graphical user interface
- Password protection

Environmental conditions
- Ambient temperatures 10 – 35°C (50 – 95°F)
- Relative humidity <85% non condensing
- Vibration undetectable by human
- Free from corrosive gas, dust, and particles

User interface
- 8” WVGA touch screen interface
- Embedded computer
- Internal thermal printer
- USB and ethernet connections

Options
- 6-position 32 mm automatic sample changer
- 5-position 40 mm automatic sample changer
- Single position 32 mm sample spinner
- Helium purge
- Fundamental parameters
- 2.0 megapixel CMOS color camera with manual collimators

Spectrometer data
Single phase AC	100/240 V, 1.4 A (50/60 Hz)
Dimensions:	331 (W) x 432 (D) x 376 (H) mm (13 x 17 x 14.8 in)
Weight:	16 kg (35 lbs.)

Backed by Rigaku

Since its inception in 1951, Rigaku has been at the forefront of analytical and industrial instrumentation technology. Today, with hundreds of major innovations to our credit, the Rigaku Group of Companies are world leaders in the field of analytical X-ray instrumentation. Rigaku employs over 1,100 people worldwide in operations based in Japan, the U.S., Europe, South America and China.